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Based on the standard self-organizing map neural network model, we introduce a kind of coupled map lattice
system to investigate self-organized criticai§OQ in the activity of model neural populations. Our system
is simulated by a more detailed integrate-and-fire mechanism and a kind of local perturbation driving rule; it
can display SOC behavior in a certain range of system parameters, even with period boundary condition. More
importantly, when the influence of synaptic plasticity is adequately considered, we can find that our system’s
learning process plays a promotive role in the emergence of SOC behavior.
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I. INTRODUCTION Hopfield[6], and some worKincluding ourselveshas been
done[7-9]. We hope that grasping the mechanics of SOC
A few years ago, Balet al. introduced the concept of the processes in the brain will be helpful in understanding the
“self-organized criticality” (SOQ in the sand pile mod¢il].  higher functions of the brain. So we try to study SOC in the
From then on, this concept has been widely studied in mangctivity of model neural populations.
extended dissipative dynamical systems, such as earthquakesIn this paper, we introduce a kind of coupled map lattice
[2], biology evolution[3], forest fires[4], and so on. It is System to simulate the associative memory process of brain.
shown that all these large dynamical systems tend to selfOur system has a kind of local perturbation driving rule and
organize into a statistically stationary state without intrinsic2 more detailed integrate-and-fire mechanism that are differ-
spatial and temporal scales. This critical state is achieve@nt from previous systems. We think that the local driving is
over a wide range of the parameters of the system and no fif@ore fit for the simulation of the associative memory process
tuning is needed, and it is characterized by a power-law disof brain because it is natural to assume that not all the neu-
tribution of avalanche sizes, where the size is the total numtons in cortex but some special neurons in a particular loca-
ber of toppling events or unstable units. In this sense, th&on of the cortex respond the external signal. Our system can
dynamical state of every spatial and temporal scale cagmerge SOC behavigwhich is characterized by the power-
emerge if the system is in a SOC state. Therefore, it is conl@aw behavior of the avalanche sjzan a certain range of
sidered that the system in a SOC state has maximal complegystem parameters, even with a period boundary condition.
ity and latent computing potency. More importantly, when the influence of synaptic plasticity is
The human brain is one of the most complex systems, anddequately considered, we can find that our system’s learning
it possesses about 8 10" neurons. The brain’s informa- Process plays a promotive role in the emergence of SOC
tion process has the properties of stability andbehavior. We also find the average activity level of synapses
variability—on the one hand, there is relative stable informa-have important influence on the SOC behavior.
tion stored in the brain and on the other hand, the brain is
influenced by the environment and people should Il. THE MODEL
continuous-update knowledge and points. So it is stated that
the brain must operate at the critical state. This view is con-
sistent with Bak’s view[5], he argues that the brain can be On the standard self-organizing m&OM) model[10]. It
neither subcritical nor supercritical but self-organized criti-"as tWo layers, the first one is an input layer, there fare
cal: in the first case, the external input signal can only accesgeurons, receiving ah dimension input vectot. The sec-
a small limited part of the information; in the second caseond one is a computing layer, it is a two-dimensional square
any input would cause an explosive branching process withifattice with L X L neurons, where every neuron is connected
the brain, and connect the input with essentially everythingvith hinput neurons, and the afferent weight veaigy is an
that is stored in the brain; except in last case, the brain has d@hdimensional vector.
appropriate sensitivity to small shocks. In fact, the strong During a learning ste, an h-dimensional vector is
analogies between the dynamics of the SOC model for earthinput, and the computing layer finds the “winner” neuron
quakes and that of neurobiology have been realized byi* j*) which has the best-matching weight vector, accord-
ing to the formula:

Our model is a kind of coupled map lattice system based
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where the term|(t) — &;;(t)| is the distance betweef(t) ~ Ning neuron {*,j*) are updated using the Kohonen rule.
and &;; (t). All neuron outputs are 0 except for the winner's Other’s are not updated. The updating rule is written as fol-

output z;«jx , which is 1. Then the weight vectors of all the lows:
neurons within the certain neighborholigk ;« (t) of the win-

GO+ IX[L) — b ()], 0[] =(*%),
@ () +0.5X[£(t) = @x (D], 1f (i,]) € Nixj (D)

and (i,j)#(i*,j*),
w;j (1), otherwise,

2

where Njxj«(t) is a time variable, it is very wide in the the nearest four neighbors will receive a pulaetion poten-
beginning and shrinks monotonously with time until it only tial) and its membrane potentigt,;, will be changed
includes a winner.

The aforementioned is our system’s learning mechanism, Viiji— Vs + a* B* Ve
and after this process, we can find that when a specific vector
lis input, only one particular neuron responds, different in- Vixjs—0, 3)

puts have different response neurdmsnners, similar in-

PUtS have near winners, and_ the input welghts Self'Orgamz\?vhere the termu X BX Vi« represents the action potential
into a topological map of the input spajaee Fig. 2b)]. That

: between the neuron that fires and its neighbors. We assume it
means the output state of the neural network is evolved froni]5 proportional tV; « . Here, we assume that the parameter

the disordered case to the stable and topology preserving \ohresents the average activity level of synapse between

state in state space. _ _ _neurons in someone’s brain, and it can be tuned to simulate
According to the neuron-dynamical picture of the brain, e gifference between individualg.g., clever or foolish

the essential feature of the associative memory process C&{e assumes represents the influence of synaptic plasticity.

be described as a kind of integrate-and-fire pro¢@s It can be described by a general Hebbian rule: If two neigh-
When a specific external input signal is input into brain, apor neuron respond states for a specific input pattern are

particular location of cortex will respondhe membrane po- similar, the synapse connection between them is strong,

tential of response neurons increps&/hen the membrane otherwise it is weak. So we leB be a function, 8

potential of a neuron exceeds the threshold, the neuron sendsexp(—||@«j« — @/ [*), where the term||@«js — ;| is

out signals in the form of action potentials and then returnghe distance between the firing neurdif ,*) and neuron

to the rest statéhe neuron fires The signal is transferred by (i’,j’) in the input weight space3 can also have another

the synapses to the other neurons, which has an excitatory @unction form, if the form can also represent the general

inhibitory influence on the membrane potential of the receivHebbian rule.

ing cells according to whether the synapses are excitatory or In study of SOC the effect of boundary conditions have

inhibitory, respectively. The resulting potential, if it also ex- been widely discusseld1-14. In our model, we generally

ceeds the threshold, leads to the next step firing, and so onose open boundary condition, but for further discussion, we

giving an avalanche. It will then cause a response in somelso use the period boundary condition in Sec. Il D.

other areas of the cortex. Now, we present the computer-simulation procedure of
To grasp the associative memory mechanism and to do thais model in detail.

simulation in our model, we add a kind of integrate-and-fire (i) Variable initialization—Here, we leh=2. In the two-

mechanism into our model, described in the following detail.dimensional input space, randomly create many input vec-
In this mechanism, we only consider the computing layertors, both components of the input vector are betw@ei.

(the square lattiog representing a sheet of cells occurring in Randomly initialize the afferent weight vectors betwgén

the cortex. For any neuron sited at positi@n) in the lattice,  1; 0,1] too. Let the dynamical variableg; randomly distrib-

we give it a dynamical variabl®/;;, which represents the ute betweer0,1].

membrane potential/;; =0 andV;;>0 represent the neuron (i) Learning process—During each learning step, a single

in a rest state and depolarized state respectively. Here we d@ctor is chosen randomly from the input vectors, and into

not consider the situation d¥;; <0, which represents the the network, then the winner neuron is found according to

neuron in the hyperpolarized state. formula (1), and the afferent weight vectors are updated ac-
When a neuron’s dynamical variabMi:;« exceeds a cording to formula(2). After some step$the number of the

thresholdVy,=1, the neuroni(*,j*) is unstable and it will learning steps increases with the increment of the lattice size

fire and return to a rest staf¥;«;+ returns to zerp Each of L), the state of the network reaches a stable and topology
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preserving case, and the topological structure of the input's 1x10°4

. . size is 20X20 E

space has been learned and stored in the model. B R leamed

(ii ) Associative memory and avalanche process.—Here 1x10 "4 g, O f‘f"i;":f"é’;t'sam'"g process 3
we use the sequential update mechanism. 1x107%4 ' ]

(@) Driving Rule—Randomly choose a single input vector, .
find the winner neuronit,j*), and let its dynamical vari- 00y o - 026 (39% %\ 3
able Vixjx=1.0. The winner is unstable and will fire, and < wot] ps) ~ st % ™, ]
then an avalanch@ssociate memojyybegins. T ~112 %OO m‘g

(b) If there exits any unstable neurov;=V,= 1, redis- 1x10° 3 M 1
tribute the dynamical variables of it and its nearest neighbors 1x10° '
according to Eq(3). e

(c) Repeat steygb) until all the neurons of the lattice are
stable. Define this process as one avalanche, and define theFIG. 1. The probability of the avalanche siaemstable neurons
avalanche sizéassociate memory sizas the number of all P(S) as a function of siz&for a 20x 20 system withk=0.26. The
unstable neurons in this process. curves corresppnd_to two conditigns: one is with learning some

(d) Begin step(a) again and another new avalandfas- steps, another is without the learning process.
sociate memorybegins.

It is worth noting that our integrate-and-fire mechanism
[expression3)] is similar to the dynamical rule of the OFC
earthquake model when we treak 8 as one paramet¢g].

weights are randomly distributed; they do not respond to the
topological structure of the input spafeee Fig. 2a)]. So
B=exp(—| @ —a;/|?) is small, which means the synaptic

But there are important differences between them. Ou onnections between neighbor neurons is weak. After the
mechanism has more details and we think that these detaif@ammg process, the neighbor neurons respondeq to the near
are important to simulate associative memory processedIPut vectors, and the afferent weights self-organized into a
They are the natural choice for our model. t0p0|09lC<’il| map ofzthe input space see Figh)2 So g )
Our driving rule[step(a)] is a kind of local perturbation =exXp(~ || @ — @) is large, which means the synaptic
rule. It is different from the global perturbation rule in pre- CONNections between the neighbor neurons are strong. As we

vious system$§7—9] and the OFC moddP]. We think, it is  ¢an See in next subsection, as the synaptic connection
impossible that a specific external signal will cause the inStrength increases, the SOC behavior becomes more obvious.

cremention of all the neuron’s membrane potential of the SO the leaming process can strengthen the synaptic con-
cortex at the same time. The situation should be that thg€ction and play a promotive role in the emergence of SOC
neurons in a particular location of cortex respond to the ex2€havior. We can think that, before learning, the system op-

ternal signal, then bring change to neuron states of anoth&rates at a subcritical state, in which case the external input

area just like we mentioned aboyeSo we use the local signal can only access a small, limited part of the system.
driving rule. We think it is more fit for the simulation of After the learning process, the system is trained to operate at
associative memory processes of the brain. the SOC state, which is highly sensitive to small outer input

and robust. It is consistent with PBak’s view—the brain can

neither be subcritical nor supercritical, it must be critical and
lll. SIMULATION RESULTS self-organized[5]. We think it is consistent with the real

A. Power-law behavior and influence of the learning process ~ World too, since if we do not learn, how can we associate one

. . . thing with another thing? So for further investigation, we use
First, we let the size of the lattice be @0, wherea the condition with the learning process below.

=0.26 is fixed. Here we consider two situations: one is with-
out learning process, the other is learning some steps. In
these two situations, the probability of the avalanche size
(unstable neuronsP(S) as a function of sizé& can be seen In our simulations, we assume represents the average
in Fig. 1. We find that in the associated memory process, foactivity level of strength of synapse and it can be tuned to
a learning situation, the distribution of the avalanche sizesimulate the difference between individuals. Because there
satisfies the power-law behavidt(S)«S™7, r~1.12. We are intelligent differences exactly between individuals, our
can also see, without the learning situation, there is neonsideration otr in our model is natural. As shown in Figs.
power-law behavior but a localized behavior. 3 and 4, whernn is small (#<0.24), the probability of the
The trademark of SOC is the existence of a power-lanavalanche sizé’(S) decays exponentially with the size of
distribution function of the avalanche sizes that scale withthe avalanches and the biggest avalanche sizes do not scale
the system sizg2]. With the learning process our system canwith the system siz&, which means there are only localized
emerge as power-law behavior, and as we can see in detail behaviors. Withe increasing, the power-law behavior gradu-
Sec. Il C the large size cutoff of the avalanche distributionally generates, and the transition from localized to SOC be-
scales with the system size So we conclude that our sys- havior occurgnear the point otv=0.24), but whena is very
tem can display SOC behavior with the learning process. large (@>0.26), the associative memory process falls into a
We think that the reason for the difference between thalead loop state(That means the avalanche process will not
two conditions is the influence of synaptic plasticithe  stop, and some neurons will fire again and again, just like the
parameter B). Before the learning process, the afferentterm “dead loop” in computer programmingAs we can see

B. Influence of the pulse discharging intensity parametei
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FIG. 2. Self-organization of the afferent weights. The weight
vector of each neuron in the QL0 lattice is plotted as a point in
the original input space; each weight vector is connected to those of
the four neighbors by a lin€a) Before the learning process afig

after the learning process.

in detail in Figs. 4, 5, and Sec. lll C, the large size cutoff of
the avalanche distribution scales with the system &ide

the range of 0.24 #<<0.26, and we can conclude that the :
system can display SOC behavior in this particular range of  1x1¢0* +—r—"r-+-—r—"Fr———

parametei.

C. Influence of lattice size

In the OFC model, the lattice sideis important. If the

0.8 1
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FIG. 3. Same as Fig. 1 with the learning process condition, but
with parameter changed.

with the system sizg, it is a localized behavior, otherwise it
means SOC. We have investigated the influence of lattice
size. In Fig. 4a), we show the results of simulations with
L=15, 25, and 40, respectively, wher=0.20. We can see
that all the biggest avalanche sizes are about 20—30 and they
do not scale with the systeiy it is a localized behavior.

In Fig. 4(b), we show the results of simulations with
=15, 25, and 40, respectively, when=0.255. We can see

1x10° ——————
= ]
1x10 - (a) 4
1x10°?4
& 1x10°
o 1 a=0.20 ]
1x10™ : size is 40X40
] —o— : size is 25X25 ]
X107 e : size is 15X15 k\
] - ]
1x10° -+ ———
10° g 10
-1_3 ''''''''' ]
1x10 g (b)
1x10°
—~ 1x10°
€ ju=0255 %
1x10™ 3 :size is 40X40 % %
j—o0— : size is 25X25 ]
X107 g :sizeis 15X15 |

FIG. 4. (a) Simulation results for the probability of the ava-

lanche sizeP(S) as a function of siz&with «=0.20. The different
curves refer to different system sizéé=15, 25, and 40(b) The

large size cutoff of the avalanche distribution does not scaleame with(a) but «=0.255.
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—~] o 40x40 ] ] size is 20X20 7~1.37 ]
@10 ] - 25X25 o 1x10°4 0=0.26 3
(=} ] —p— 1 a E e . E
"1 10°% 1 15X15 e  ips) ~ s
1 p(S,L)~L"g(S/L") ] X107y —o—all avalanches 3
10°4 1~1.05 |3 ] —fit of all avalanches
3 . nale ] 5
] o~1.5 ik 1107y @ boundary avalanches 3
10* 1 fit of boundary avalanches camat
' 'I-1 ' ' "|0 ' ' 1X10-6 L | T T T T T T
100 g 10 10° 10" g 10°
3__ T M M M T M M T M M ]
10 R _ (b) FIG. 6. Simulation results for all and boundary avalanches in the
102 - ] 20X 20 lattice with open boundary conditions aad-0.26.
101_; 020255 ] is not observed12-14. So we want to investigate the
] ) ] boundary effects of our model.
@ 100 We first perform numerical simulations in order to sample
L2 j— = 25X25 ] all and boundary avalanch@valanches starting from bor-
=1 10" —V—15X15 . ders size distributiongFig. 6); here we use open boundary
L1p(S,L)~L g(SIL’) ™ ] conditions, respectively. We can see that all the avalanches
1074 v~1.65 Y, are distributed a®(S)*«S™ ", wherer~1.12, and the bound-
10.3_f p~2.2 o _ ary avalanches are distributedRES) « S~ ™ 7'~1.37.This
— T : result is similar to that of Refl15] and can be treated as
10 s/ 10 10 evidence that open boundaries create inhomogeneities.

In Fig. 7, we draw the avalanche size distributions with
FIG. 5. (a) Data collapse of the case with the=0.245 andN  open and period boundary conditions, respectively. Contrary
=15, 25, and 40, respectively, usig(S,L)~L""g(SL*). (b)  to previous models, with the period boundary condition, the
The same with(a) but a=0.255. avalanches are not localized but obey the power-law and the
probability of large scale avalanches is larger than that with

that, with the increment of sizk, the range of power-law  gpen boundary conditions. It looks like the effective size of
behavior increases. We also perform a finite-size-scalingne |attice is large with period boundary conditions.

analysis of our data. We make the fit t(S,L) scales with The reason for the contrast may be the different driving
system sizd. as rules. The global perturbation driving rule makes the OFC
P(S,L)~L Pg(S/LY), @) model a deterministic system and our local perturbation driv-

ing rule brings some randomness to our model. It may be the
randomness frustrates the tendency of our model to a local-
ized state, which it would otherwise reach with a period
boundary condition.

whereg is the so-called universal scaling function. As can be
seen in Figs. &), and gb), the finite-size scaling works well
and p~1.5,v~1.05 whena=0.245, andp~2.2,v~1.65
whena=0.255; it is a kind of finite-size effect and is similar AR : :
to the results of the OFC modEgt]. ]
From Figs. 4 and 5, we find that the cutoff at large ava- g4
lanche sizes scale with the system dizie a certain range of ]
the parameter (0.24a<0.26). This can show the criticality >
of the system. Some think that it can be treated as a criterior 1073
that the system reaches the SOC sfa&. ]

B 19" size is 20x20
D. Boundary effects 16=0.25
In the study of SOC, the influence of boundary conditions 1x1¢*{-O-- open boundary condition
have been widely discuss¢®,11-14. It is believed that for ] period boundary condition
the fundamental mechanism producing SOC in the OFC 5] T
model that the boundaries act as inhomogeneities that frus 1x10°4 7 ' 10 g 10
trate the natural tendency of the model to synchronize. In-
deed, it has been shown that, with period boundary condi- FIG. 7. P(S) as a function ofS for a 20x 20 system with open
tion, the avalanches of the model are localized and criticalityand period boundary conditions, respectively; 0.25.
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IV. CONCLUSION AND DISCUSSION vide an approach for analyzing the collective behavior of

. euron populations in the brain. Based on SOC behavior,
mclgecl’\o\?vfahfrﬂ?;dl?c?jzdk?nn dtgfesct)ﬁn?eadrdmioﬂgiigr:l gtee t\r'nvotg aybe we can describe the information process of the brain
. ' - P P YS! as follows. When an outer pattetexternal signalis input
simulate the associative memory process of the brain. Our

L . . into the brain, after the learning process, the brain is trained
system is different from previous systems, because it has & operate at the SOC state, the neuron populations in the
.k'nd of local pgrturbatlon _dnvmg rule and a more deta||ec_i brain behave with SOC behavior, the pattern is stored in the
:Etzg(rzztﬁ;ﬁ?ggeergicshag:mm' grgﬁqnetir:;erlg/leorz?rg 2ftg?]\t/|'9)rrain as a SOC attractor, and the associative memory can be

. 9 y P S P ydesigned as the process of the input pattern evolving into the
when the influence of synaptic plasticity is adequately con-

sidered, we can find that our system’s learning process playattractor. But our model is only a very simple simulation of

: . . fRe brain and many details of neurobiology are ignored. For
a promotive role in the_ emergence of SOC behawor_. We als is reason there is still a lot of work to do.
find the average activity level of synapses have an importan
|anu_ence on the SO.C behavior. In addition we have analyzed ACKNOWLEDGMENT
the influence of various factors of the model.
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