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Type of self-organized criticality model based on neural networks
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Based on the standard self-organizing map neural network model, we introduce a kind of coupled map lattice
system to investigate self-organized criticality~SOC! in the activity of model neural populations. Our system
is simulated by a more detailed integrate-and-fire mechanism and a kind of local perturbation driving rule; it
can display SOC behavior in a certain range of system parameters, even with period boundary condition. More
importantly, when the influence of synaptic plasticity is adequately considered, we can find that our system’s
learning process plays a promotive role in the emergence of SOC behavior.
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I. INTRODUCTION

A few years ago, Baket al. introduced the concept of th
‘‘self-organized criticality’’~SOC! in the sand pile model@1#.
From then on, this concept has been widely studied in m
extended dissipative dynamical systems, such as earthqu
@2#, biology evolution@3#, forest fires@4#, and so on. It is
shown that all these large dynamical systems tend to s
organize into a statistically stationary state without intrin
spatial and temporal scales. This critical state is achie
over a wide range of the parameters of the system and no
tuning is needed, and it is characterized by a power-law
tribution of avalanche sizes, where the size is the total nu
ber of toppling events or unstable units. In this sense,
dynamical state of every spatial and temporal scale
emerge if the system is in a SOC state. Therefore, it is c
sidered that the system in a SOC state has maximal comp
ity and latent computing potency.

The human brain is one of the most complex systems,
it possesses about 1010– 1012 neurons. The brain’s informa
tion process has the properties of stability a
variability—on the one hand, there is relative stable inform
tion stored in the brain and on the other hand, the brain
influenced by the environment and people sho
continuous-update knowledge and points. So it is stated
the brain must operate at the critical state. This view is c
sistent with Bak’s view@5#, he argues that the brain can b
neither subcritical nor supercritical but self-organized cr
cal; in the first case, the external input signal can only acc
a small limited part of the information; in the second ca
any input would cause an explosive branching process wi
the brain, and connect the input with essentially everyth
that is stored in the brain; except in last case, the brain ha
appropriate sensitivity to small shocks. In fact, the stro
analogies between the dynamics of the SOC model for ea
quakes and that of neurobiology have been realized
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Hopfield @6#, and some work~including ourselves! has been
done @7–9#. We hope that grasping the mechanics of SO
processes in the brain will be helpful in understanding
higher functions of the brain. So we try to study SOC in t
activity of model neural populations.

In this paper, we introduce a kind of coupled map latti
system to simulate the associative memory process of br
Our system has a kind of local perturbation driving rule a
a more detailed integrate-and-fire mechanism that are di
ent from previous systems. We think that the local driving
more fit for the simulation of the associative memory proc
of brain because it is natural to assume that not all the n
rons in cortex but some special neurons in a particular lo
tion of the cortex respond the external signal. Our system
emerge SOC behavior~which is characterized by the powe
law behavior of the avalanche size! in a certain range of
system parameters, even with a period boundary condit
More importantly, when the influence of synaptic plasticity
adequately considered, we can find that our system’s lear
process plays a promotive role in the emergence of S
behavior. We also find the average activity level of synap
have important influence on the SOC behavior.

II. THE MODEL

Our model is a kind of coupled map lattice system bas
on the standard self-organizing map~SOM! model @10#. It
has two layers, the first one is an input layer, there arh

neurons, receiving anh dimension input vectorzW . The sec-
ond one is a computing layer, it is a two-dimensional squ
lattice with L3L neurons, where every neuron is connect
with h input neurons, and the afferent weight vectorvW i j is an
h-dimensional vector.

During a learning stept, an h-dimensional vectorzW is
input, and the computing layer finds the ‘‘winner’’ neuro
( i * , j * ) which has the best-matching weight vector, acco
ing to the formula:

izW~ t !2vW i* j* ~ t !i5min
i , j

izW~ t !2vW i j ~ t !i , ~1!
©2002 The American Physical Society14-1
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where the termizW (t)2vW i j (t)i is the distance betweenzW (t)
andvW i j (t). All neuron outputs are 0 except for the winner
outputh i* j* , which is 1. Then the weight vectors of all th
neurons within the certain neighborhoodNi* j* (t) of the win-
ly
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ning neuron (i * , j * ) are updated using the Kohonen rul
Other’s are not updated. The updating rule is written as
lows:
vW i j ~ t11!55
vW i j ~ t !113@zW~ t !2vW i* j* ~ t !#, if ~ i , j !5~ i * , j * !,

vW i j ~ t !10.53@zW~ t !2vW i* j* ~ t !#, if ~ i , j !PNi* j* ~ t !

and ~ i , j !Þ~ i * , j * !,

vW i j ~ t !, otherwise,
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where Ni* j* (t) is a time variable, it is very wide in the
beginning and shrinks monotonously with time until it on
includes a winner.

The aforementioned is our system’s learning mechani
and after this process, we can find that when a specific ve

zW is input, only one particular neuron responds, different
puts have different response neurons~winners!, similar in-
puts have near winners, and the input weights self-orga
into a topological map of the input space@see Fig. 2~b!#. That
means the output state of the neural network is evolved f
the disordered case to the stable and topology preser
state in state space.

According to the neuron-dynamical picture of the bra
the essential feature of the associative memory process
be described as a kind of integrate-and-fire process@7#.

When a specific external input signal is input into brain
particular location of cortex will respond~the membrane po
tential of response neurons increase!. When the membrane
potential of a neuron exceeds the threshold, the neuron s
out signals in the form of action potentials and then retu
to the rest state~the neuron fires!. The signal is transferred b
the synapses to the other neurons, which has an excitato
inhibitory influence on the membrane potential of the rece
ing cells according to whether the synapses are excitator
inhibitory, respectively. The resulting potential, if it also e
ceeds the threshold, leads to the next step firing, and so
giving an avalanche. It will then cause a response in so
other areas of the cortex.

To grasp the associative memory mechanism and to do
simulation in our model, we add a kind of integrate-and-fi
mechanism into our model, described in the following det

In this mechanism, we only consider the computing la
~the square lattice!, representing a sheet of cells occurring
the cortex. For any neuron sited at position~i, j! in the lattice,
we give it a dynamical variableVi j , which represents the
membrane potential.Vi j 50 andVi j .0 represent the neuro
in a rest state and depolarized state respectively. Here w
not consider the situation ofVi j ,0, which represents the
neuron in the hyperpolarized state.

When a neuron’s dynamical variableVi* j* exceeds a
thresholdVth51, the neuron (i * , j * ) is unstable and it will
fire and return to a rest state~Vi* j* returns to zero!. Each of
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the nearest four neighbors will receive a pulse~action poten-
tial! and its membrane potentialVi 8 j 8 will be changed

Vi 8 j 8→Vi 8 j 81a* b* Vi* j*

Vi* j* →0, ~3!

where the terma3b3Vi* j* represents the action potenti
between the neuron that fires and its neighbors. We assum
is proportional toVi* j* . Here, we assume that the parame
a represents the average activity level of synapse betw
neurons in someone’s brain, and it can be tuned to simu
the difference between individuals~e.g., clever or foolish!.
We assumeb represents the influence of synaptic plastici
It can be described by a general Hebbian rule: If two nei
bor neuron respond states for a specific input pattern
similar, the synapse connection between them is stro
otherwise it is weak. So we letb be a function, b
5exp(2ivW i* j*2vW i8j8i

2), where the termivW i* j* 2vW i 8 j 8i is
the distance between the firing neuron (i * , j * ) and neuron
( i 8, j 8) in the input weight space.b can also have anothe
function form, if the form can also represent the gene
Hebbian rule.

In study of SOC the effect of boundary conditions ha
been widely discussed@11–14#. In our model, we generally
use open boundary condition, but for further discussion,
also use the period boundary condition in Sec. III D.

Now, we present the computer-simulation procedure
this model in detail.

~i! Variable initialization—Here, we leth52. In the two-
dimensional input space, randomly create many input v
tors, both components of the input vector are between@0,1#.
Randomly initialize the afferent weight vectors between@0,
1; 0,1# too. Let the dynamical variablesVi j randomly distrib-
ute between@0,1#.

~ii ! Learning process—During each learning step, a sin
vector is chosen randomly from the input vectors, and i
the network, then the winner neuron is found according
formula ~1!, and the afferent weight vectors are updated
cording to formula~2!. After some steps~the number of the
learning steps increases with the increment of the lattice
L!, the state of the network reaches a stable and topol
4-2
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preserving case, and the topological structure of the inp
space has been learned and stored in the model.

~iii ! Associative memory and avalanche process.—H
we use the sequential update mechanism.

~a! Driving Rule—Randomly choose a single input vect
find the winner neuron (i * , j * ), and let its dynamical vari-
able Vi* j* 51.0. The winner is unstable and will fire, an
then an avalanche~associate memory! begins.

~b! If there exits any unstable neuron,Vi j >Vth51, redis-
tribute the dynamical variables of it and its nearest neighb
according to Eq.~3!.

~c! Repeat step~b! until all the neurons of the lattice ar
stable. Define this process as one avalanche, and defin
avalanche size~associate memory size! as the number of al
unstable neurons in this process.

~d! Begin step~a! again and another new avalanche~as-
sociate memory! begins.

It is worth noting that our integrate-and-fire mechanis
@expression~3!# is similar to the dynamical rule of the OFC
earthquake model when we treata3b as one parameter@2#.
But there are important differences between them. O
mechanism has more details and we think that these de
are important to simulate associative memory proces
They are the natural choice for our model.

Our driving rule@step~a!# is a kind of local perturbation
rule. It is different from the global perturbation rule in pr
vious systems@7–9# and the OFC model@2#. We think, it is
impossible that a specific external signal will cause the
cremention of all the neuron’s membrane potential of
cortex at the same time. The situation should be that
neurons in a particular location of cortex respond to the
ternal signal, then bring change to neuron states of ano
area ~just like we mentioned above!. So we use the loca
driving rule. We think it is more fit for the simulation o
associative memory processes of the brain.

III. SIMULATION RESULTS

A. Power-law behavior and influence of the learning process

First, we let the size of the lattice be 20320, wherea
50.26 is fixed. Here we consider two situations: one is wi
out learning process, the other is learning some steps
these two situations, the probability of the avalanche s
~unstable neurons! P(S) as a function of sizeS can be seen
in Fig. 1. We find that in the associated memory process,
a learning situation, the distribution of the avalanche s
satisfies the power-law behaviorP(S)}S2t, t'1.12. We
can also see, without the learning situation, there is
power-law behavior but a localized behavior.

The trademark of SOC is the existence of a power-l
distribution function of the avalanche sizes that scale w
the system size@2#. With the learning process our system c
emerge as power-law behavior, and as we can see in det
Sec. III C the large size cutoff of the avalanche distributi
scales with the system sizeL. So we conclude that our sys
tem can display SOC behavior with the learning process

We think that the reason for the difference between
two conditions is the influence of synaptic plasticity~the
parameterb!. Before the learning process, the affere
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weights are randomly distributed; they do not respond to
topological structure of the input space@see Fig. 2~a!#. So
b5exp(2ivW i* j*2vW i8j8i

2) is small, which means the synapt
connections between neighbor neurons is weak. After
learning process, the neighbor neurons responded to the
input vectors, and the afferent weights self-organized int
topological map of the input space see Fig. 2~b!. So b
5exp(2ivW i* j*2vW i8j8i

2) is large, which means the synapt
connections between the neighbor neurons are strong. A
can see in next subsection, as the synaptic connec
strength increases, the SOC behavior becomes more obv

So the learning process can strengthen the synaptic
nection and play a promotive role in the emergence of S
behavior. We can think that, before learning, the system
erates at a subcritical state, in which case the external in
signal can only access a small, limited part of the syste
After the learning process, the system is trained to operat
the SOC state, which is highly sensitive to small outer inp
and robust. It is consistent with PBak’s view—the brain c
neither be subcritical nor supercritical, it must be critical a
self-organized@5#. We think it is consistent with the rea
world too, since if we do not learn, how can we associate
thing with another thing? So for further investigation, we u
the condition with the learning process below.

B. Influence of the pulse discharging intensity parametera

In our simulations, we assumea represents the averag
activity level of strength of synapse and it can be tuned
simulate the difference between individuals. Because th
are intelligent differences exactly between individuals, o
consideration ofa in our model is natural. As shown in Figs
3 and 4, whena is small (a,0.24), the probability of the
avalanche sizeP(S) decays exponentially with the size o
the avalanches and the biggest avalanche sizes do not
with the system sizeL, which means there are only localize
behaviors. Witha increasing, the power-law behavior grad
ally generates, and the transition from localized to SOC
havior occurs~near the point ofa50.24!, but whena is very
large (a.0.26), the associative memory process falls into
dead loop state.~That means the avalanche process will n
stop, and some neurons will fire again and again, just like
term ‘‘dead loop’’ in computer programming.! As we can see

FIG. 1. The probability of the avalanche size~unstable neurons!
P(S) as a function of sizeS for a 20320 system witha50.26. The
curves correspond to two conditions: one is with learning so
steps, another is without the learning process.
4-3
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in detail in Figs. 4, 5, and Sec. III C, the large size cutoff
the avalanche distribution scales with the system sizeL in
the range of 0.24,a,0.26, and we can conclude that th
system can display SOC behavior in this particular range
parametera.

C. Influence of lattice size

In the OFC model, the lattice sizeL is important. If the
large size cutoff of the avalanche distribution does not sc

FIG. 2. Self-organization of the afferent weights. The weig
vector of each neuron in the 10310 lattice is plotted as a point in
the original input space; each weight vector is connected to thos
the four neighbors by a line.~a! Before the learning process and~b!
after the learning process.
02611
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with the system sizeL, it is a localized behavior, otherwise
means SOC. We have investigated the influence of lat
size. In Fig. 4~a!, we show the results of simulations wit
L515, 25, and 40, respectively, whena50.20. We can see
that all the biggest avalanche sizes are about 20–30 and
do not scale with the systemL; it is a localized behavior.

In Fig. 4~b!, we show the results of simulations withL
515, 25, and 40, respectively, whena50.255. We can see

t

of

FIG. 3. Same as Fig. 1 with the learning process condition,
with parametera changed.

FIG. 4. ~a! Simulation results for the probability of the ava
lanche sizeP(S) as a function of sizeSwith a50.20. The different
curves refer to different system sizes,N515, 25, and 40.~b! The
same with~a! but a50.255.
4-4
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that, with the increment of sizeL, the range of power-law
behavior increases. We also perform a finite-size-sca
analysis of our data. We make the fit thatP(S,L) scales with
system sizeL as

P~S,L !;L2rg~S/Lv!, ~4!

whereg is the so-called universal scaling function. As can
seen in Figs. 5~a!, and 5~b!, the finite-size scaling works wel
and r;1.5, v;1.05 whena50.245, andr;2.2, v;1.65
whena50.255; it is a kind of finite-size effect and is simila
to the results of the OFC model@2#.

From Figs. 4 and 5, we find that the cutoff at large av
lanche sizes scale with the system sizeL in a certain range of
the parameter (0.24,a,0.26). This can show the criticality
of the system. Some think that it can be treated as a crite
that the system reaches the SOC state@14#.

D. Boundary effects

In the study of SOC, the influence of boundary conditio
have been widely discussed@2,11–14#. It is believed that for
the fundamental mechanism producing SOC in the O
model that the boundaries act as inhomogeneities that f
trate the natural tendency of the model to synchronize.
deed, it has been shown that, with period boundary co
tion, the avalanches of the model are localized and critica

FIG. 5. ~a! Data collapse of the case with thea50.245 andN
515, 25, and 40, respectively, usingP(S,L);L2rg(S/Lv). ~b!
The same with~a! but a50.255.
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is not observed@12–14#. So we want to investigate th
boundary effects of our model.

We first perform numerical simulations in order to samp
all and boundary avalanche~avalanches starting from bor
ders! size distributions~Fig. 6!; here we use open boundar
conditions, respectively. We can see that all the avalanc
are distributed asP(S)}S2t, wheret'1.12, and the bound
ary avalanches are distributed asP(S)}S2t8, t8'1.37. This
result is similar to that of Ref.@15# and can be treated a
evidence that open boundaries create inhomogeneities.

In Fig. 7, we draw the avalanche size distributions w
open and period boundary conditions, respectively. Contr
to previous models, with the period boundary condition,
avalanches are not localized but obey the power-law and
probability of large scale avalanches is larger than that w
open boundary conditions. It looks like the effective size
the lattice is large with period boundary conditions.

The reason for the contrast may be the different driv
rules. The global perturbation driving rule makes the O
model a deterministic system and our local perturbation d
ing rule brings some randomness to our model. It may be
randomness frustrates the tendency of our model to a lo
ized state, which it would otherwise reach with a peri
boundary condition.

FIG. 6. Simulation results for all and boundary avalanches in
20320 lattice with open boundary conditions anda50.26.

FIG. 7. P(S) as a function ofS for a 20320 system with open
and period boundary conditions, respectively,a50.25.
4-5
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IV. CONCLUSION AND DISCUSSION

In conclusion, based on the standard SOM neural netw
model, we introduce a kind of coupled map lattice system
simulate the associative memory process of the brain.
system is different from previous systems, because it ha
kind of local perturbation driving rule and a more detail
integrate-and-fire mechanism. It can emerge SOC beha
in a certain range of system parameters. More importan
when the influence of synaptic plasticity is adequately c
sidered, we can find that our system’s learning process p
a promotive role in the emergence of SOC behavior. We a
find the average activity level of synapses have an impor
influence on the SOC behavior. In addition we have analy
the influence of various factors of the model.

Our work just attempts to indicate some relations betw
SOC behavior and brain dynamical processes. It might p
ed
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vide an approach for analyzing the collective behavior
neuron populations in the brain. Based on SOC behav
maybe we can describe the information process of the b
as follows. When an outer pattern~external signal! is input
into the brain, after the learning process, the brain is trai
to operate at the SOC state, the neuron populations in
brain behave with SOC behavior, the pattern is stored in
brain as a SOC attractor, and the associative memory ca
designed as the process of the input pattern evolving into
attractor. But our model is only a very simple simulation
the brain and many details of neurobiology are ignored.
this reason there is still a lot of work to do.
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